Joe Montroy
Peter Dordal
COMP 343 - 002

5 December 2025

Mininet Project

1. See attached pcapng file.

2. TCP Reno vs. TCP Cubic

I began by running [gigiseJsR RIS
10.0.3.10 5430 reno & python3 sender.py 10000 10.0.3.10 5431 cubickQiNs IS BRIl s
to port 5430, and Cubic is being sent to 543 1. I ran this, changing the delay between r —- h3
between 50ms, 100ms, and 200ms. For each case, I ran it 3+ times because nothing can be
proven if it is only run once.

For a delay of 50ms, here are the runs:

"Node: h3"

Reno completed 72% of the blocks

and had the fraction of 7,216,804/10,000,000 or .7216. Cubic has a large lead the whole way.

R e e

The ratio was similar, with Reno

only completing 75% of the block transfer in the time it took Reno to do 100%. It's a fraction of
7,546,528/10,000,000 or 0.7546. Cubic again took a large lead in the beginning, began to lose it

a little bit, then took it back

The third trial was similar to the
other two. Reno completed 66.9% of the transfer in the time it took Cubic. The fraction was
6,695,104/10,000,000 or 0.6695. Cubic took a large lead and increased it as the round went on. It
is safe to say that Cubic is the faster TCP protocol with a bandwidth of 50ms. For Reno, the
average throughput was roughly 390,000 bytes/390 blocks per second, where Cubics was
531,000 bytes/ 531 blocks per second. I calculated this by adding the sum of all of the

second-to-last values and dividing it by the sum of seconds that value was recorded at.

Next is 100ms, I ran 4 tests because the results were more varied:

Reno jumps out to a large lead and
holds onto it for the rest of the round. Cubic only completed 76% of its transfer by the time Reno

finished, and the fraction was 10,000,000/7,592,864 or 1.317.

"Node: h3"
jola# pyt

In this one, Cubic jumps out to a

massive lead in the first few seconds, but then slowly loses it as Reno slowly crawls its way back

over the course of the test. Cubic barely held on in the end as Reno completed 97% of its

transfer. If they were transferring 15000 blocks, Reno would have taken the cake.

“Node: h3"

ninet/lowola# pythond dualrec

Similarly to test #2, Cubic creates a
large gap, but it is slowly closed by Reno, not in time to beat Cubic, but it completed 75% of its
transfer in the time it took Cubic to complete.

The conclusion I came to for a 100ms delay is that there is no clear winner. For 50ms, it
seemed like Cubic won most of the time, but for 100ms, it flip-flopped back and forth. I ran
probably 10 tests total, and Reno would win one and Cubic the next. This is due to the phase
effects that change the throughput of the transfer, essentially randomizing it every time. It’s also
reflected in the throughput data; the average throughput of the tests that [measured was Reno
453,000 bytes/ 453 blocks per second and Cubic 454,000 bytes/ 454 blocks per second. Which is

nearly identical to one another.

RTT 200ms:

Node: h3

1la# python? dualr

I’m going to make this short and sweet. Cubic dominated the entire 200ms competition, usually
winning by a factor of 9 or 10. The throughput for Reno was 116,000 bytes/ 116 blocks per
second, and Cubic was 739,000 bytes/ 739 blocks per second, which was the highest out of all of

the delay times. It is clear that with a 200ms delay, Cubic is the way to go.

